z-logo
open-access-imgOpen Access
Weyl geometry and the nonlinear mechanics of distributed point defects
Author(s) -
Arash Yavari,
Alain Goriely
Publication year - 2012
Publication title -
proceedings of the royal society a mathematical physical and engineering sciences
Language(s) - English
Resource type - Journals
eISSN - 1471-2946
pISSN - 1364-5021
DOI - 10.1098/rspa.2012.0342
Subject(s) - mathematics , mathematical analysis , nonlinear system , geometry , tensor field , manifold (fluid mechanics) , isotropy , compressibility , ball (mathematics) , classical mechanics , physics , exact solutions in general relativity , mechanics , mechanical engineering , quantum mechanics , engineering
The residual stress field of a nonlinear elastic solid with a spherically symmetric distribution of point defects is obtained explicitly using methods from differential geometry. The material manifold of a solid with distributed point defects-where the body is stress-free-is a flat Weyl manifold, i.e. a manifold with an affine connection that has non-metricity with vanishing traceless part, but both its torsion and curvature tensors vanish. Given a spherically symmetric point defect distribution, we construct its Weyl material manifold using the method of Cartan's moving frames. Having the material manifold, the anelasticity problem is transformed to a nonlinear elasticity problem and reduces the problem of computing the residual stresses to finding an embedding into the Euclidean ambient space. In the case of incompressible neo-Hookean solids, we calculate explicitly this residual stress field. We consider the example of a finite ball and a point defect distribution uniform in a smaller ball and vanishing elsewhere. We show that the residual stress field inside the smaller ball is uniform and hydrostatic. We also prove a nonlinear analogue of Eshelby's celebrated inclusion problem for a spherical inclusion in an isotropic incompressible nonlinear solid. © 2012 The Royal Society

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom