z-logo
open-access-imgOpen Access
The critical shear stress of mercury single crystals
Author(s) -
Kristen Greenland
Publication year - 1937
Publication title -
proceedings of the royal society of london. series a, mathematical and physical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.814
H-Index - 135
eISSN - 2053-9169
pISSN - 0080-4630
DOI - 10.1098/rspa.1937.0209
Subject(s) - critical resolved shear stress , melting point , mercury (programming language) , impurity , materials science , shear (geology) , metal , slip (aerodynamics) , condensed matter physics , single crystal , composite material , metallurgy , crystallography , chemistry , thermodynamics , physics , shear rate , organic chemistry , viscosity , computer science , programming language
The influence of very small quantities of impurity on the critical shear stress of metal single crystals has an important bearing on the mechanism of their plastic deformation. For investigations in this field, mercury is a very suitable metal: its impurity content can easily be reduced to an extremely low level (Hulett 1911) and it contains no dissolved gases (Hulett 1911). Also, as first pointed out by Andrade (1914), single crystal wires of this metal can be prepared without difficulty. The low melting point of mercury (-38∙8° C.) is far from being a disadvantage. The crystals can be maintained at -60° C., and at a temperature so near the melting point the thermal agitation may be expected to accentuate phenomena not observable at lower temperatures, if such agitation plays the important part in the mechanism of glide ascribed to it (Taylor 1934; Polanyi 1934; Orowan 1934). As a possible instance of this, the experiments to be described have revealed the existence of a preliminary “set” preceding the true plastic yield. Widely differing forms of slip band have also been observed, and are described elsewhere (Greenland 1937). It is hoped that these results will throw further light on the mechanism of glide.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here