z-logo
open-access-imgOpen Access
The efficiency of secondary electron emission
Author(s) -
S. Ramachandra Rao
Publication year - 1933
Publication title -
proceedings of the royal society of london. series a, containing papers of a mathematical and physical character
Language(s) - English
Resource type - Journals
eISSN - 2053-9150
pISSN - 0950-1207
DOI - 10.1098/rspa.1933.0028
Subject(s) - electron , secondary electrons , atomic physics , electron multiplier , secondary emission , physics , nuclear physics
The velocity distribution of the secondary electrons produced by bombarding a metallic face with a stream of primary electrons has been a matter of interest ever since the beginning of the study of secondary electron emission. As early as in 1908, Richardson and von Baeyer independently showed that slow moving electrons were copiously reflected from conducting faces. Farnsworth showed that for primary electrons having velocities less than 9 volts, most of the secondary electrons had velocities equal to the primary. As the primary potential was increased, the percentage of the reflected electrons decreased gradually but was appreciable at 110 volts. Davisson and Kunsman obtained reflected electrons even at primary potentials of 1000 and 1500 volts in the cases of some metal faces. At higher potentials we have also the electrons that undergo the Davisson and Germer scattering from the many crystal facets on the bombarded targets. As the potential is increased, the number of electrons with low velocities increases steadily and at large applied potentials, we have a large percentage of these in the secondary beam. These conclusions followed as a result of the work of Farnsworth who studied the distribution of velocities of the secondary electrons by the retarding potential method. He did not actually calculate the energy distribution from his curves but has drawn attention to the above conclusions. A careful investigation of the velocity distribution of the secondary electrons from various conducting faces was made by Rudberg at primary potentials ranging up to about 1000 volts. He adopted a magnetic deflection method similar to the one used in the analysis of the β rays and of the electrons excited by X-rays. The method had indeed been used by previous workers for the study of secondary emission, but Rudberg improved the technique considerably and obtained better focussing conditions. His results suggest that there are three groups of electrons in the secondary beam. The first group contains electrons returning with the same velocity as the primary. In the second group of electrons, we have those which undergo inelastic collisions with the orbital and structure electrons and hence are returned with some loss of energy. Richardson has drawn attention to the well-marked minimum between the two groups in Rudberg’s curves and infers that free electrons are not involved in the collisions. Finally there is the third group which contains the slow secondary electrons. The second and the third groups appear to be definitely connected with each other since they are both predominant at high primary potentials and become negligible at low primary potentials. Richardson suggests that the third group is the result of the excitation accompanying the inelastic collisions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here