z-logo
open-access-imgOpen Access
On the determination of molecular fields. —II. From the equation of state of a gas
Author(s) -
Janet E. Jones
Publication year - 1924
Publication title -
proceedings of the royal society of london. series a, containing papers of a mathematical and physical character
Language(s) - English
Resource type - Journals
eISSN - 2053-9150
pISSN - 0950-1207
DOI - 10.1098/rspa.1924.0082
Subject(s) - equation of state , viscosity , thermodynamics , field (mathematics) , statistical physics , function (biology) , physics , molecular dynamics , argon , chemistry , mathematics , quantum mechanics , atomic physics , evolutionary biology , biology , pure mathematics
The investigation of a preceding paper has shown that the temperature variation of viscosity, as determined experimentally, can be satisfactorily explained in many gases on the assumption that the repulsive and attractive parts of the molecular field are each according to an inverse power of the distance. In some cases, in argon, for example, it was further shown that the experimental facts can be explained by more than one molecular model, from which we inferred that viscosity results alone are insufficient to determine precisely the nature of molecular fields. The object of the present paper is to ascertain whether a molecular model of the same type will also explain available experimental data concerning the equation of state of a gas, and if so, whether the results so obtained, when taken in conjunction with those obtained from viscosity, will definitely fix the molecular field. Such an investigation is made possible by the elaborate analysis by Kamerlingh Onnes of the observational material. He has expressed the results in the form of an empirical equation of state of the typepv = A + B/v + C/v 2 + D/v 4 + E/v 6 + F/v 8 , where the coefficients A ... F, called by himvirial coefficients , are determined as functions of the temperature to fit the observations. Now it is possible by various methods to obtain a theoretical expression for B as a function of the temperature and a strict comparison can then be made between theory and experiment. Unfortunately the solution for B, although applicable to any molecular model of spherical symmetry, is purely formal and contains an integral which can be evaluated only in special cases. This has been done up to now for only two simple models, viz., a van der Waals molecule, and a molecule repelling according to an inverse power law (without attraction), but it is shown in this paper that it can also be evaluated in the case of the model, which was successful in explaining viscosity results. As the two other models just mentioned are particular cases of this, the appropriate formulæ for B are easily deduced from the general one given here.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here