A new species ofProegerniafrom the Namba Formation in South Australia and the early evolution and environment of Australian egerniine skinks
Author(s) -
Kailah M. Thorn,
Mark N. Hutchinson,
Minho Lee,
N. J. Brown,
Aaron B. Camens,
Trevor H. Worthy
Publication year - 2021
Publication title -
royal society open science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 51
ISSN - 2054-5703
DOI - 10.1098/rsos.201686
Subject(s) - sister group , biology , taxon , fauna , ecology , premaxilla , paleontology , zoology , phylogenetic tree , clade , biochemistry , maxilla , anatomy , gene
The diverse living Australian lizard fauna contrasts greatly with their limited Oligo-Miocene fossil record. New Oligo-Miocene fossil vertebrates from the Namba Formation (south of Lake Frome, South Australia) were uncovered from multiple expeditions from 2007 to 2018. Abundant disarticulated material of small vertebrates was concentrated in shallow lenses along the palaeolake edges, now exposed on the western of Lake Pinpa also known from Billeroo Creek 2 km northeast. The fossiliferous lens within the Namba Formation hosting the abundant aquatic (such as fish, platypus Obdurodon and waterfowl) and diverse terrestrial (such as possums, dasyuromorphs and scincids) vertebrates and is hereafter recognized as the Fish Lens. The stratigraphic provenance of these deposits in relation to prior finds in the area is also established. A new egerniine scincid taxon Proegernia mikebulli sp. nov. described herein, is based on a near-complete reconstructed mandible, maxilla, premaxilla and pterygoid. Postcranial scincid elements were also recovered with this material, but could not yet be confidently associated with P. mikebulli . This new taxon is recovered as the sister species to P. palankarinnensis , in a tip-dated total-evidence phylogenetic analysis, where both are recovered as stem Australian egerniines. These taxa also help pinpoint the timing of the arrival of scincids to Australia, with egerniines the first radiation to reach the continent.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom