Bi-enzymes treatments attenuate cognitive impairment associated with oxidative damage of heavy metals
Author(s) -
Chao Chen,
Xiaoxin Zhang,
Hao Huang,
Hongyi Bao,
Xiaodong Li,
Ye Cheng,
Jing Zhang,
Yin Ding,
Yanguang Yang,
Haiying Gu,
Donglin Xia
Publication year - 2021
Publication title -
royal society open science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 51
ISSN - 2054-5703
DOI - 10.1098/rsos.201404
Subject(s) - oxidative stress , superoxide dismutase , catalase , pharmacology , chemistry , toxicant , medicine , biochemistry , toxicity
Oxidative stress has been implicated in the pathogenesis of cognitive impairment. Lead (Pb) is a common environmental toxicant and plays a vital role in oxidative stress activation. In this study, a superoxide dismutase (SOD) and catalase (CAT) containing poly (lactic-co-glycolic acid) (PLGA) meso-particles (PLGA@SOD-CAT) were prepared to attenuate cognitive impairment via inhibiting oxidative stress in rats. It was prepared using a double emulsion (water/oil/water phase) technique to minimize the hazardous effects of Pb burden on cognitive impairment. The meso-particles antagonized the Pb-induced cognitive impairments. Behaviour, serum biochemical parameters and biomarkers of oxidative stress in rats were evaluated after they were subjected to intravenous injection with lead nitrate and PLGA@SOD-CAT. Moreover, the potential protective mechanism of PLGA@SOD-CAT was determined. Notably, PLGA@SOD-CAT appreciably agented memory impairment caused by lead nitrate and it could significantly inhibit Pb-induced oxidative stress in the blood. Furthermore, a remarkable reversion effect of cognitive impairments, including escape latency, crossing platform times and time per cent during the platform quadrant, after PLGA@SOD-CAT administration were noted. Therefore, these results suggested that the bi-enzymes platform was a superior product in eliminating Pb-induced cognitive impairments through reducing expression of Pb-associated oxidative stress, and it could potentially be applied in detoxifying heavy metals in blood circulation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom