z-logo
open-access-imgOpen Access
Context-dependent effects of relative temperature extremes on bill morphology in a songbird
Author(s) -
Katie LaBarbera,
Kyle J Marsh,
Kia R. R. Hayes,
Talisin T. Hammond
Publication year - 2020
Publication title -
royal society open science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 51
ISSN - 2054-5703
DOI - 10.1098/rsos.192203
Subject(s) - songbird , context (archaeology) , trait , climate change , ecology , generalist and specialist species , precipitation , environmental change , thermoregulation , biology , environmental science , atmospheric sciences , geography , habitat , meteorology , physics , paleontology , computer science , programming language
Species increasingly face environmental extremes. Morphological responses to changes in average environmental conditions are well documented, but responses to environmental extremes remain poorly understood. We used museum specimens to investigate relationships between a thermoregulatory morphological trait, bird bill surface area (SA) and a measure of short-term relative temperature extremity (RTE), which quantifies the degree that temperature maxima or minima diverge from the 5-year norm. Using a widespread, generalist species, Junco hyemalis , we found that SA exhibited different patterns of association with RTE depending on the overall temperature regime and on precipitation. While thermoregulatory function predicts larger SA at higher RTE, we found this only when the RTE existed in an environmental context that opposed it: atypically cold minimum temperature in a warm climate, or atypically warm maximum temperature in a cool climate. When environmental context amplified the RTE, we found a negative relationship between SA and RTE. We also found that the strength of associations between SA and RTE increased with precipitation. Our results suggest that trait responses to environmental variation may qualitatively differ depending on the overall environmental context, and that environmental change that extremifies already-extreme environments may produce responses that cannot be predicted from observations in less-extreme contexts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here