z-logo
open-access-imgOpen Access
Photocatalytic inactivation ofEscherichia coliunder UV light irradiation using large surface area anatase TiO2quantum dots
Author(s) -
Faheem Ahmed,
Chawki Awada,
Sajid Ali Ansari,
Abdullah Aljaafari,
Adil Alshoaibi
Publication year - 2019
Publication title -
royal society open science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 51
ISSN - 2054-5703
DOI - 10.1098/rsos.191444
Subject(s) - anatase , photocatalysis , quantum dot , irradiation , escherichia coli , photochemistry , materials science , visible spectrum , nanotechnology , chemistry , optoelectronics , chemical engineering , physics , biochemistry , catalysis , quantum mechanics , engineering , gene
In this study, high specific surface areas (SSAs) of anatase titanium dioxide (TiO 2 ) quantum dots (QDs) were successfully synthesized through a novel one-step microwave–hydrothermal method in rapid synthesis time (20 min) without further heat treatment. XRD analysis and HR-TEM images showed that the as-prepared TiO 2 QDs of approximately 2 nm size have high crystallinity with anatase phase. Optical properties showed that the energy band gap ( E g ) of as-prepared TiO 2 QDs was 3.60 eV, which is higher than the standard TiO 2 band gap, which might be due to the quantum size effect. Raman studies showed shifting and broadening of the peaks of TiO 2 QDs due to the reduction of the crystallite size. The obtained Brunauer–Emmett–Teller specific surface area (381 m 2 g −1 ) of TiO 2 QDs is greater than the surface area (181 m 2 g −1 ) of commercial TiO 2 nanoparticles. The photocatalytic activities of TiO 2 QDs were conducted by the inactivation of Escherischia coli under ultraviolet light irradiation and compared with commercially available anatase TiO 2 nanoparticles. The photocatalytic inactivation ability of E. coli was estimated to be 91% at 60 µg ml −1 for TiO 2 QDs, which is superior to the commercial TiO 2 nanoparticles. Hence, the present study provides new insight into the rapid synthesis of TiO 2 QDs without any annealing treatment to increase the absorbance of ultraviolet light for superior photocatalytic inactivation ability of E. coli .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom