
Preparation of nanoporous BiVO 4 /TiO 2 /Ti film through electrodeposition for photoelectrochemical water splitting
Author(s) -
Dong Hong-xing,
Qiuping Liu,
Yi He
Publication year - 2018
Publication title -
royal society open science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 51
ISSN - 2054-5703
DOI - 10.1098/rsos.180728
Subject(s) - water splitting , nanoporous , photoelectrochemistry , materials science , photoelectrochemical cell , nanotechnology , chemical engineering , electrochemistry , photocatalysis , chemistry , electrode , catalysis , biochemistry , engineering , electrolyte
A nanoporous BiVO 4 /TiO 2 /Ti film was successfully fabricated by electrodepositing a nanoporous BiOI film on nanoporous TiO 2 arrays followed by annealing at 450°C for 2 h. The electrodeposition of BiOI film was carried out at different times (10, 30, 100, 500 and 1000 s) in Bi(NO 3 ) 3 and KI solution. The morphological, crystallographic and photoelectrochemical properties of the prepared BiVO 4 /TiO 2 /Ti heterojunction film were examined by using different characterization techniques. UV–vis spectrum absorption studies confirmed an increase in absorption intensities with increasing electrodeposition time, and the band gap of BiVO 4 /TiO 2 /Ti film is lower than that of TiO 2 /Ti. The photocatalytic efficiency of BiVO 4 /TiO 2 /Ti heterojunction film was higher compared to that of the TiO 2 /Ti film owing to the longer transient decay time for BiVO 4 /TiO 2 /Ti film (3.2 s) than that of TiO 2 /Ti film (0.95 s) in our experiment. The BiVO 4 /TiO 2 /Ti heterojunction film prepared by electrodeposition for 1000 s followed by annealing showed a high photocurrent density of 0.3363 mA cm −2 at 0.6 V versus saturated calomel electrode. Furthermore, the lowest charge transfer resistance from electrochemical impedance spectroscopy was recorded for the BiVO 4 /TiO 2 /Ti film (1000 s) under irradiation.