Membrane-assisted extraction of monoterpenes: from in silico solvent screening towards biotechnological process application
Author(s) -
Lars Janoschek,
L Grozdev,
Sonja Berensmeier
Publication year - 2018
Publication title -
royal society open science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.84
H-Index - 51
ISSN - 2054-5703
DOI - 10.1098/rsos.172004
Subject(s) - partition coefficient , solvent , extraction (chemistry) , hexane , aqueous solution , heptane , chemistry , carvone , chromatography , hildebrand solubility parameter , cosmo rs , membrane , limonene , organic chemistry , essential oil , biochemistry , ionic liquid , catalysis
This work focuses on the process development of membrane-assisted solvent extraction of hydrophobic compounds such as monoterpenes. Beginning with the choice of suitable solvents, quantum chemical calculations with the simulation tool COSMO-RS were carried out to predict the partition coefficient (log P ) of (S)-(+)-carvone and terpinen-4-ol in various solvent–water systems and validated afterwards with experimental data. COSMO-RS results show good prediction accuracy for non-polar solvents such as n-hexane, ethyl acetate and n-heptane even in the presence of salts and glycerol in an aqueous medium. Based on the high log P value, n-heptane was chosen for the extraction of (S)-(+)-carvone in a lab-scale hollow-fibre membrane contactor. Two operation modes are investigated where experimental and theoretical mass transfer values, based on their related partition coefficients, were compared. In addition, the process is evaluated in terms of extraction efficiency and overall product recovery, and its biotechnological application potential is discussed. Our work demonstrates that the combination of in silico prediction by COSMO-RS with membrane-assisted extraction is a promising approach for the recovery of hydrophobic compounds from aqueous solutions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom