
News or social media? Socio-economic divide of mobile service consumption
Author(s) -
Iñaki Ucar,
Marco Gramaglia,
Marco Fiore,
Zbigniew Smoreda,
Esteban Moro
Publication year - 2021
Publication title -
journal of the royal society interface
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.655
H-Index - 139
eISSN - 1742-5689
pISSN - 1742-5662
DOI - 10.1098/rsif.2021.0350
Subject(s) - digital divide , consumption (sociology) , mobile phone , gini coefficient , social media , computer science , poverty , service (business) , internet privacy , multimedia , business , world wide web , the internet , economic inequality , inequality , telecommunications , marketing , economics , economic growth , sociology , social science , mathematical analysis , mathematics
Reliable and timely information on socio-economic status and divides is critical to social and economic research and policing. Novel data sources from mobile communication platforms have enabled new cost-effective approaches and models to investigate social disparity, but their lack of interpretability, accuracy or scale has limited their relevance to date. We investigate the divide in digital mobile service usage with a large dataset of 3.7 billion time-stamped and geo-referenced mobile traffic records in a major European country, and find profound geographical unevenness in mobile service usage—especially on news, e-mail, social media consumption and audio/video streaming. We relate such diversity with income, educational attainment and inequality, and reveal how low-income or low-education areas are more likely to engage in video streaming or social media and less in news consumption, information searching, e-mail or audio streaming. The digital usage gap is so large that we can accurately infer the socio-economic status of a small area or even its Gini coefficient only from aggregated data traffic. Our results make the case for an inexpensive, privacy-preserving, real-time and scalable way to understand the digital usage divide and, in turn, poverty, unemployment or economic growth in our societies through mobile phone data.