Open Access
Quantifying biologically essential aspects of environmental light
Author(s) -
Dan-Eric Nilsson,
Jochen Smolka
Publication year - 2021
Publication title -
journal of the royal society interface
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.655
H-Index - 139
eISSN - 1742-5689
pISSN - 1742-5662
DOI - 10.1098/rsif.2021.0184
Subject(s) - spectral composition , computer science , light field , blue light , optics , remote sensing , biological system , environmental science , artificial intelligence , physics , biology , geography
Quantifying and comparing light environments are crucial for interior lighting, architecture and visual ergonomics. Yet, current methods only catch a small subset of the parameters that constitute a light environment, and rarely account for the light that reaches the eye. Here, we describe a new method, the environmental light field (ELF) method, which quantifies all essential features that characterize a light environment, including important aspects that have previously been overlooked. The ELF method uses a calibrated digital image sensor with wide-angle optics to record the radiances that would reach the eyes of people in the environment. As a function of elevation angle, it quantifies the absolute photon flux, its spectral composition in red–green–blue resolution as well as its variation (contrast-span). Together these values provide a complete description of the factors that characterize a light environment. The ELF method thus offers a powerful and convenient tool for the assessment and comparison of light environments. We also present a graphic standard for easy comparison of light environments, and show that different natural and artificial environments have characteristic distributions of light.