Splitting fracture in bovine bone using a porosity-based spring network model
Author(s) -
Ashwij Mayya,
P. Praveen,
Anuradha Banerjee,
R. Rajesh
Publication year - 2016
Publication title -
journal of the royal society interface
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.655
H-Index - 139
eISSN - 1742-5689
pISSN - 1742-5662
DOI - 10.1098/rsif.2016.0809
Subject(s) - fracture (geology) , spring (device) , materials science , porosity , compression (physics) , network model , composite material , mechanics , structural engineering , physics , computer science , artificial intelligence , engineering
We examine the specific role of the structure of the network of pores in plexiform bone in its fracture behaviour under compression. Computed tomography scan images of the sample pre- and post-compressive failure show the existence of weak planes formed by aligned thin long pores extending through the length. We show that the physics of the fracture process is captured by a two-dimensional random spring network model that reproduces well the macroscopic response and qualitative features of fracture paths obtained experimentally, as well as avalanche statistics seen in recent experiments on porcine bone.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom