Grand challenges in space synthetic biology
Author(s) -
Amor A. Menezes,
Michael Montague,
John Cumbers,
John A. Hogan,
Adam P. Arkin
Publication year - 2015
Publication title -
journal of the royal society interface
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.655
H-Index - 139
eISSN - 1742-5689
pISSN - 1742-5662
DOI - 10.1098/rsif.2015.0803
Subject(s) - synthetic biology , payload (computing) , space exploration , space (punctuation) , field (mathematics) , grand challenges , computer science , data science , engineering , biology , aerospace engineering , computational biology , mathematics , computer security , network packet , pure mathematics , operating system
Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom