Using digital photography to implement the McFarland method
Author(s) -
Luis Lahuerta Zamora,
María Teresa PérezGracia
Publication year - 2012
Publication title -
journal of the royal society interface
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.655
H-Index - 139
eISSN - 1742-5689
pISSN - 1742-5662
DOI - 10.1098/rsif.2011.0809
Subject(s) - turbidimetry , nephelometry , calibration curve , turbidity , absorbance , calibration , reproducibility , optics , digital imaging , computer science , digital camera , software , biological system , chromatography , chemistry , digital image , mathematics , artificial intelligence , physics , image processing , statistics , geology , image (mathematics) , oceanography , antibody , detection limit , immunology , biology , programming language
The McFarland method allows the concentration of bacterial cells in a liquid medium to be determined by either of two instrumental techniques: turbidimetry or nephelometry. The microbes act by absorbing and scattering incident light, so the absorbance (turbidimetry) or light intensity (nephelometry) measured is directly proportional to their concentration in the medium. In this work, we developed a new analytical imaging method for determining the concentration of bacterial cells in liquid media. Digital images of a series of McFarland standards are used to assign turbidity-based colour values with the aid of dedicated software. Such values are proportional to bacterial concentrations, which allow a calibration curve to be readily constructed. This paper assesses the calibration reproducibility of an intra-laboratory study and compares the turbidimetric and nephelometric results with those provided by the proposed method, which is relatively simple and affordable; in fact, it can be implemented with a digital camera and the public domain software ImageJ.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom