z-logo
open-access-imgOpen Access
Mechanical evidence that flamingos can support their body on one leg with little active muscular force
Author(s) -
YoungHui Chang,
Lena H. Ting
Publication year - 2017
Publication title -
biology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.596
H-Index - 110
eISSN - 1744-957X
pISSN - 1744-9561
DOI - 10.1098/rsbl.2016.0948
Subject(s) - leg muscle , biology , balance (ability) , body weight , anatomy , joint (building) , physical medicine and rehabilitation , medicine , engineering , architectural engineering , neuroscience , endocrinology
Flamingos (Phoenicopteridae) often stand and sleep on one leg for long periods, but it is unknown how much active muscle contractile force they use for the mechanical demands of standing on one leg: body weight support and maintaining balance. First, we demonstrated that flamingo cadavers could passively support body weight on one leg without any muscle activity while adopting a stable, unchanging, joint posture resembling that seen in live flamingos. By contrast, the cadaveric flamingo could not be stably held in a two-legged pose, suggesting a greater necessity for active muscle force to stabilize two-legged versus one-legged postures. Our results suggest that flamingos engage a passively engaged gravitational stay apparatus (proximally located) for weight support during one-legged standing. Second, we discovered that live flamingos standing on one leg have markedly reduced body sway during quiescent versus alert behaviours, with the point of force application directly under the distal joint, reducing the need for muscular joint torque. Taken together, our results highlight the possibility that flamingos stand for long durations on one leg without exacting high muscular forces and, thus, with little energetic expenditure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom