z-logo
open-access-imgOpen Access
Inferring node dates from tip dates in fossil Canidae: the importance of tree priors
Author(s) -
Nicholas J. Matzke,
April Wright
Publication year - 2016
Publication title -
biology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.596
H-Index - 110
eISSN - 1744-957X
pISSN - 1744-9561
DOI - 10.1098/rsbl.2016.0328
Subject(s) - biology , prior probability , tree (set theory) , evolutionary biology , node (physics) , computational biology , paleontology , bayesian probability , statistics , combinatorics , mathematics , structural engineering , engineering
Tip-dating methods are becoming popular alternatives to traditional node calibration approaches for building time-scaled phylogenetic trees, but questions remain about their application to empirical datasets. We compared the performance of the most popular methods against a dated tree of fossil Canidae derived from previously published monographs. Using a canid morphology dataset, we performed tip-dating using BEAST v. 2.1.3 and MrBayes v. 3.2.5. We find that for key nodes (Canis, approx. 3.2 Ma, Caninae approx. 11.7 Ma) a non-mechanistic model using a uniform tree prior produces estimates that are unrealistically old (27.5, 38.9 Ma). Mechanistic models (incorporating lineage birth, death and sampling rates) estimate ages that are closely in line with prior research. We provide a discussion of these two families of models (mechanistic versus non-mechanistic) and their applicability to fossil datasets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom