z-logo
open-access-imgOpen Access
More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs
Author(s) -
Nicholas G. Crawford,
Brant C. Faircloth,
John E. McCormack,
Robb T. Brumfield,
Kevin Winker,
Travis C. Glenn
Publication year - 2012
Publication title -
biology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.596
H-Index - 110
eISSN - 1744-957X
pISSN - 1744-9561
DOI - 10.1098/rsbl.2012.0331
Subject(s) - biology , phylogenetic tree , phylogenetics , evolutionary biology , sister group , genome , clade , most recent common ancestor , lineage (genetic) , zoology , turtle (robot) , genetics , gene , ecology
We present the first genomic-scale analysis addressing the phylogenetic position of turtles, using over 1000 loci from representatives of all major reptile lineages including tuatara. Previously, studies of morphological traits positioned turtles either at the base of the reptile tree or with lizards, snakes and tuatara (lepidosaurs), whereas molecular analyses typically allied turtles with crocodiles and birds (archosaurs). A recent analysis of shared microRNA families found that turtles are more closely related to lepidosaurs. To test this hypothesis with data from many single-copy nuclear loci dispersed throughout the genome, we used sequence capture, high-throughput sequencing and published genomes to obtain sequences from 1145 ultraconserved elements (UCEs) and their variable flanking DNA. The resulting phylogeny provides overwhelming support for the hypothesis that turtles evolved from a common ancestor of birds and crocodilians, rejecting the hypothesized relationship between turtles and lepidosaurs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom