Live-bearing manta ray: how the embryo acquires oxygen without placenta and umbilical cord
Author(s) -
Taketeru Tomita,
Minoru Toda,
Keiichi Ueda,
Senzo Uchida,
Kazuhiro Nakaya
Publication year - 2012
Publication title -
biology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.596
H-Index - 110
eISSN - 1744-957X
pISSN - 1744-9561
DOI - 10.1098/rsbl.2012.0288
Subject(s) - biology , embryo , anatomy , umbilical cord , placenta , andrology , fetus , pregnancy , fishery , genetics , medicine
We conducted an ultrasonographic experiment on a pregnant manta ray, Manta alfredi (Chondrichthyes, Batoidea). This study showed how the embryo of the live-bearing elasmobranchs respires in the body of the female. In the embryonic stage, the manta ray embryo takes in uterine fluid by buccal-pumping. After birth, the manta ray shifts its respiratory mode from buccal-pumping to ram-ventilation. The rapid reduction of the spiracle size in the young manta ray may reflect this shift of respiratory mode. Unlike mammals or some carcharhinid sharks that acquire oxygen through a placenta and umbilical cord, the manta ray embryo does not have a direct connection with the mother. Thus, the manta ray embryo obtains oxygen by buccal-pumping of the uterine fluid, in the same way that the embryos of egg-laying species obtain oxygen from the water in the egg case. This finding extends our understanding of the diversity of embryonic respiratory systems in live-bearing vertebrates.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom