Trans-oceanic host dispersal explains high seabird tick diversity on Cape Verde islands
Author(s) -
Elena GómezDíaz,
James A. MorrisPocock,
Jacob GonzálezSolís,
Karen D. McCoy
Publication year - 2012
Publication title -
biology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.596
H-Index - 110
eISSN - 1744-957X
pISSN - 1744-9561
DOI - 10.1098/rsbl.2012.0179
Subject(s) - biology , biological dispersal , ecology , archipelago , cape verde , metapopulation , host (biology) , colonization , seabird , phylogeography , phylogenetics , predation , population , history , ethnology , demography , biochemistry , sociology , gene
Parasites represent ideal models for unravelling biogeographic patterns and mechanisms of diversification on islands. Both host-mediated dispersal and within-island adaptation can shape parasite island assemblages. In this study, we examined patterns of genetic diversity and structure of Ornithodoros seabird ticks within the Cape Verde Archipelago in relation to their global phylogeography. Contrary to expectations, ticks from multiple, geographically distant clades mixed within the archipelago. Trans-oceanic colonization via host movements probably explains high local tick diversity, contrasting with previous research that suggests little large-scale dispersal in these birds. Although host specificity was not obvious at a global scale, host-associated genetic structure was found within Cape Verde colonies, indicating that post-colonization adaptation to specific hosts probably occurs. These results highlight the role of host metapopulation dynamics in the evolutionary ecology and epidemiology of avian parasites and pathogens.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom