Hermit crabs perceive the extent of their virtual bodies
Author(s) -
Kohei Sonoda,
Akira Asakura,
Mai Minoura,
Robert W. Elwood,
Yukio-P. Gunji
Publication year - 2012
Publication title -
biology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.596
H-Index - 110
eISSN - 1744-957X
pISSN - 1744-9561
DOI - 10.1098/rsbl.2012.0085
Subject(s) - hermit crab , biology , shell (structure) , rotation (mathematics) , ecology , decapoda , crustacean , computer vision , computer science , engineering , civil engineering
A flexible body image is required by animals if they are to adapt to body changes and move effectively within a structurally complex environment. Here, we show that terrestrial hermit crabs, Coenobita rugosus, which frequently change shells, can modify walking behaviour, dependent on the shape of the shell. Hermit crabs walked along a corridor that had alternating left and right corners; if it was narrow at the corner, crabs rotated their bodies to avoid the wall, indicating an awareness of environmental obstacles. This rotation increased when a plastic plate was attached to the shell. We suggest that the shell, when extended by the plate, becomes assimilated to the hermit crab's own body. While there are cases of a tool being assimilated with the body, our result is the first example of the habitat where an animal lives and/or carries being part of a virtual body.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom