α2δ-1–BoundN-Methyl-d -aspartate Receptors Mediate Morphine-induced Hyperalgesia and Analgesic Tolerance by Potentiating Glutamatergic Input in Rodents
Author(s) -
Meichun Deng,
Shao-Rui Chen,
Hong Chen,
HuiLin Pan
Publication year - 2019
Publication title -
anesthesiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.874
H-Index - 234
eISSN - 1528-1175
pISSN - 0003-3022
DOI - 10.1097/aln.0000000000002648
Subject(s) - hyperalgesia , receptor , opioid , morphine , nmda receptor , dorsal root ganglion , glutamate receptor , medicine , pharmacology , spinal cord , nociception , endocrinology , psychiatry
Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New Background Chronic use of μ-opioid receptor agonists paradoxically causes both hyperalgesia and the loss of analgesic efficacy. Opioid treatment increases presynaptic N-methyl-d-aspartate receptor activity to potentiate nociceptive input to spinal dorsal horn neurons. However, the mechanism responsible for this opioid-induced activation of presynaptic N-methyl-d-aspartate receptors remains unclear. α2δ-1, formerly known as a calcium channel subunit, interacts with N-methyl-d-aspartate receptors and is primarily expressed at presynaptic terminals. This study tested the hypothesis that α2δ-1–bound N-methyl-d-aspartate receptors contribute to presynaptic N-methyl-d-aspartate receptor hyperactivity associated with opioid-induced hyperalgesia and analgesic tolerance. Methods Rats (5 mg/kg) and wild-type and α2δ-1–knockout mice (10 mg/kg) were treated intraperitoneally with morphine twice/day for 8 consecutive days, and nociceptive thresholds were examined. Presynaptic N-methyl-d-aspartate receptor activity was recorded in spinal cord slices. Coimmunoprecipitation was performed to examine protein–protein interactions. Results Chronic morphine treatment in rats increased α2δ-1 protein amounts in the dorsal root ganglion and spinal cord. Chronic morphine exposure also increased the physical interaction between α2δ-1 and N-methyl-d-aspartate receptors by 1.5 ± 0.3 fold (means ± SD, P = 0.009, n = 6) and the prevalence of α2δ-1–bound N-methyl-d-aspartate receptors at spinal cord synapses. Inhibiting α2δ-1 with gabapentin or genetic knockout of α2δ-1 abolished the increase in presynaptic N-methyl-d-aspartate receptor activity in the spinal dorsal horn induced by morphine treatment. Furthermore, uncoupling the α2δ-1–N-methyl-d-aspartate receptor interaction with an α2δ-1 C terminus–interfering peptide fully reversed morphine-induced tonic activation of N-methyl-d-aspartate receptors at the central terminal of primary afferents. Finally, intraperitoneal injection of gabapentin or intrathecal injection of an α2δ-1 C terminus–interfering peptide or α2δ-1 genetic knockout abolished the mechanical and thermal hyperalgesia induced by chronic morphine exposure and largely preserved morphine’s analgesic effect during 8 days of morphine treatment. Conclusions α2δ-1–Bound N-methyl-d-aspartate receptors contribute to opioid-induced hyperalgesia and tolerance by augmenting presynaptic N-methyl-d-aspartate receptor expression and activity at the spinal cord level.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom