High-Resolution Light Microscopic Characterization of Mouse Spermatogonia1
Author(s) -
Hélio ChiariniGarcia,
Lonnie D. Russell
Publication year - 2001
Publication title -
biology of reproduction
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.366
H-Index - 180
eISSN - 1529-7268
pISSN - 0006-3363
DOI - 10.1095/biolreprod65.4.1170
Subject(s) - heterochromatin , biology , nucleus , chromatin , microbiology and biotechnology , cell nucleus , lamin , cell type , nuclear membrane , spermatogenesis , cell , genetics , dna , endocrinology
Characteristics of spermatogonia were determined in the C57BL/6J strain mouse using high-resolution light microscopy of plastic-embedded tissues and identifying cells during stages of the spermatogenic cycle. The frequency of expecting each spermatogonial cell type was a major factor in identifying and categorizing various cell types. Although numerous characteristics were described, several major differences were noted in spermatogonial cell types. The group comprising A(s), A(pr), and A(al) spermatogonia could be differentiated based primarily on mottling of heterochromatin throughout the nucleus in the absence of heterochromatin lining the nuclear envelope. The A(1) cells displayed finely granular chromatin throughout the nucleus and virtually no flakes of heterochromatin along the nuclear membrane. The A(2) through A(4) spermatogonia contained progressively more heterochromatin rimming the nucleus. Intermediate-type spermatogonia displayed flaky or shallow heterochromatin that completely rimmed the nucleus. Type B spermatogonia showed rounded heterochromatin periodically along the nuclear envelope. Use of gray-scale histograms allowed objective quantification of nuclear characteristics and showed a logical shift in the gray scale to a narrower and darker profile, from four cell types leading to A(1) cells. The ability to differentiate spermatogonial types is a prerequisite to studying the behavior and kinetics of the earliest of the germ cell types in both normal and abnormal spermatogenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom