z-logo
open-access-imgOpen Access
Identification of Markers for Precursor and Leydig Cell Differentiation in the Adult Rat Testis Following Ethane Dimethyl Sulphonate Administration1
Author(s) -
Katja J. Teerds,
Mieke de Boer-Brouwer,
Jennifer H. Dorrington,
Marga Balvers,
Richard Ivell
Publication year - 1999
Publication title -
biology of reproduction
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.366
H-Index - 180
eISSN - 1529-7268
pISSN - 0006-3363
DOI - 10.1095/biolreprod60.6.1437
Subject(s) - leydig cell , biology , sertoli cell , endocrinology , medicine , testicle , precursor cell , mesenchymal stem cell , receptor , cell , andrology , luteinizing hormone , spermatogenesis , microbiology and biotechnology , hormone , biochemistry
Administration of ethane dimethane sulphonate (EDS) to adult rats results in the destruction of all Leydig cells, followed by a complete regeneration. We investigated this regeneration process in more detail, using different markers for precursor and developing Leydig cells: the LH receptor, 3beta-hydroxysteroid dehydrogenase (3beta-HSD), transforming growth factor alpha (TGFalpha), and a new marker for Leydig cell maturation, relaxin-like factor (RLF). LH receptor immunoreactivity was found in Leydig cell-depleted testes at 3 and 8 days after EDS administration. The positive (precursor) cells had a mesenchymal-like morphology. The number of LH receptor-positive cells 8 days after EDS administration was 15 +/- 4 per 500 Sertoli cell nuclei. Fifteen days after EDS administration, the first new Leydig cells could be observed. These cells stained positively with both the antibodies against the LH receptor and 3beta-HSD, while some cells also stained positively for TGFalpha. After EDS administration, RLF mRNA disappeared from the testis and reappeared again at the time of the appearance of the first Leydig cells. Concomitant with the increase in the number of Leydig cells, the number of RLF-expressing cells increased. The observations of the present study give further support to the hypothesis that Leydig cell development in the prepubertal testis, and in the adult testis following EDS administration, takes place along the same cell lineage and suggest, therefore, that the adult EDS-treated rat can serve as a model for studying the adult-type Leydig cell development that normally occurs in the prepubertal rat testis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom