z-logo
open-access-imgOpen Access
Evolution of an Osmosensing Histidine Kinase in Field Strains of Botryotinia fuckeliana (Botrytis cinerea) in Response to Dicarboximide Fungicide Usage
Author(s) -
Wei Cui,
Ross E. Beever,
Stephanie L. Parkes,
Matthew D. Templeton
Publication year - 2004
Publication title -
phytopathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.264
H-Index - 131
eISSN - 1943-7684
pISSN - 0031-949X
DOI - 10.1094/phyto.2004.94.10.1129
Subject(s) - biology , botrytis cinerea , iprodione , genetics , isoleucine , jasmonic acid , microbiology and biotechnology , biochemistry , amino acid , gene , fungicide , botany , leucine
DNA sequence polymorphisms in the putative two-component histidine protein kinase encoded by the Daf1 gene have been identified within a sample of 5 sensitive and 27 dicarboximide-resistant field strains of Botryotinia fuckeliana (anamorph Botrytis cinerea). The gene of 3948 bp is predicted to encode a 1315-amino acid protein comprising an N-terminal region, an amino acid repeat region, which has been hypothesized to be the binding site for dicarboximide fungicide, and a C-terminal region encompassing kinase and response regulator domains. Two amino acid variants were distinguished among the sensitive strains characterized by alanine (group 1), or threonine (group 2), at position 1259 in the C-terminal region. All resistant strains could be classified into either group 1 or group 2 but, in addition, all showed changes in the second amino acid repeat region. On the basis of the differences in this repeat region, four classes of resistant strains were recognized; class 1 characterized by an isoleucine to serine mutation, class 2 by an isoleucine to asparagine mutation, class 3 by an isoleucine to arginine mutation (all at position 365), and class 4 by an isoleucine to serine mutation (position 365) as well as a glutamine to proline mutation (position 369). All classes showed similar low levels of resistance to iprodione and to vinclozolin, except for class 3 and class 4 strains, which show low resistance to iprodione but moderate (class 3) or high (class 4) resistance to vinclozolin. The classes as a group did not differ from sensitive strains in osmotic sensitivity measured as mycelial growth response, but some class 1 strains showed an abnormal morphology on osmotically amended medium. The evolution of the amino acid differences is discussed in relation to field observations. It is proposed that class 1 and class 2 strains arose by single mutations within the sensitive population, whereas classes 3 and 4 arose by single mutations within a resistant population.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here