z-logo
open-access-imgOpen Access
Ammonia and Nitrous Acid from Nitrogenous Amendments Kill the Microsclerotia of Verticillium dahliae
Author(s) -
Mario Tenuta,
George Lazarovits
Publication year - 2002
Publication title -
phytopathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.264
H-Index - 131
eISSN - 1943-7684
pISSN - 0031-949X
DOI - 10.1094/phyto.2002.92.3.255
Subject(s) - microcosm , loam , nitrification , nitrous acid , biology , ammonium , ammonia , verticillium dahliae , nitrite , agronomy , bioassay , food science , zoology , chemistry , environmental chemistry , nitrogen , nitrate , soil water , biochemistry , ecology , inorganic chemistry , organic chemistry
This study examined the mechanisms by which nitrogenous amendments such as meat and bone meal kill the soilborne plant pathogen Verticillium dahliae. The effect of nitrogen products from the amendments on the survival of microsclerotia of V. dahliae was examined by solution bioassay and soil microcosm experiments. Ammonia and nitrous acid but not their ionized counterparts, ammonium and nitrite, were toxic to microsclerotia in bioassays. In microcosms, addition of meat and bone meal (2.5%) to an acidic loamy sand resulted in the accumulation of ammonia and death of microsclerotia within 2 weeks. At lower concentrations (0.5 and 1%), microsclerotia were killed after 2 weeks when nitrous acid accumulated (>0.03 mM). In an alkaline loam soil, microsclerotia survived at 3% meat and bone meal and neither ammonia nor nitrous acid accumulated. The toxicity of ammonia to the pathogen was verified by increasing the concentration of meat and bone meal to 4% or addition of urea (1,600 mg of N per kg) to the loam soil resulting in the accumulation of ammonia (>35 mM) and death of microsclerotia. The toxicity of nitrous acid was verified by adding ammonium sulfate fertilizer to an acidic sand soil. Inhibiting nitrification with dicyandiamide revealed that nitrous acid was generated as a result of the accumulation of nitrite and an acidic pH. Thus, levels to which the toxins accumulated and the effective concentration of amendment were dependent upon the soil examined. Of the two mechanisms identified, accumulation of nitrous acid is the more promising strategy to control plant diseases in acidic soil because it is more toxic than ammonia and is formed at lower concentrations of amendments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here