z-logo
open-access-imgOpen Access
Breeding for Highly Fertile Isolates of Nectria haematococca MPVI that are Highly Virulent on Pea and In Planta Selection for Virulent Recombinants
Author(s) -
Deanna L. Funnell,
Patty S. Matthews,
Hans D. VanEtten
Publication year - 2001
Publication title -
phytopathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.264
H-Index - 131
eISSN - 1943-7684
pISSN - 0031-949X
DOI - 10.1094/phyto.2001.91.1.92
Subject(s) - biology , virulence , mating type , heterothallic , fusarium solani , genetics , microbiology and biotechnology , gene
The heterothallic ascomycete Nectria haematococca mating population VI (anamorph Fusarium solani) is a broad host range pathogen. Field isolates of this fungus that are pathogenic on pea tend to be female sterile, of low fertility, and the same mating type (MAT-1), whereas female fertile isolates of either mating type that are highly fertile tend to be nonpathogenic on this plant. To facilitate genetic analysis of traits that may be important in the ability of N. haematococca to parasitize peas, a breeding project was undertaken to produce hermaphroditic isolates of each mating type that are highly fertile and highly virulent on peas. Although the association of high virulence on peas with female sterility and the MAT-1 mating type was not completely broken, isolates with high fertility and high virulence on peas were bred within two generations. Highly virulent progeny were also isolated by an alternative method in which pea plants were inoculated with a mixture of ascospores from a cross between two moderately virulent parents. Whereas all ascospores isolated without selection in planta had lower virulence than the parents, many isolates recovered from diseased tissue were more virulent than the parental isolates. Some of the recovered isolates were shown by restriction fragment length polymorphism analysis to be genetic recombinants of the parents, demonstrating that the pea tissue selected virulent recombinants. All highly virulent isolates tested had the ability to detoxify the pea phytoalexin pisatin, again showing a link between this trait and pathogenicity on the pea.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here