
Identification of Subpopulations ofColletotrichum acutatumand Epidemiology of Almond Anthracnose in California
Author(s) -
H. Förster,
J. E. Adaskaveg
Publication year - 1999
Publication title -
phytopathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.264
H-Index - 131
eISSN - 1943-7684
pISSN - 0031-949X
DOI - 10.1094/phyto.1999.89.11.1056
Subject(s) - biology , colletotrichum acutatum , orchard , preharvest , pathogen , rosaceae , botany , horticulture , inoculation , ribosomal dna , colletotrichum , polymerase chain reaction , colletotrichum gloeosporioides , fruit tree , postharvest , microbiology and biotechnology , phylogenetics , genetics , gene
In recent years, almond anthracnose has developed into a major problem for the California almond industry. The identification of the causal pathogen as Colletotrichum acutatum was confirmed using species-specific primers and restriction fragment length polymorphisms of ribosomal DNA in comparative studies with isolates of C. acutatum from strawberry and C. gloeosporioides from citrus. Two distinct clonal subpopulations among the almond isolates of C. acutatum were identified. These two subpopulations differed in their colony appearance (pink versus gray cultures), conidial morphology, virulence in laboratory inoculation studies, temperature relationships for growth, and molecular fingerprints using random and simple-repeat primers in polymerase chain reactions. Both subpopulations were commonly isolated from the same orchard or even the same fruit. In other orchards, one subpopulation predominated over the other subpopulation. Using random, simple-repeat, and species-specific primers, isolates of the almond anthracnose pathogen from Israel were very similar to the California isolates that produce gray colonies. In addition to fruit, the pathogen was isolated from blighted blossoms, water-soaked or necrotic leaf lesions, symptomless peduncles, and spurs and wood from branches showing dieback symptoms, indicating that the amount of tissue that may be infected is more extensive than previously considered. Overwintering fruit mummies were identified as inoculum sources for early spring infections. Growth studies using almond kernels with different moisture contents indicated that postharvest damage of stored kernels likely originates from preharvest field infections.