
Insect Injection and Artificial Feeding Bioassays to Test the Vector Specificity of Flavescence Dorée Phytoplasma
Author(s) -
Alberto Bressan,
Denis Clair,
Olivier Sémétey,
E. BoudonPadieu
Publication year - 2006
Publication title -
phytopathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.264
H-Index - 131
eISSN - 1943-7684
pISSN - 0031-949X
DOI - 10.1094/phyto-96-0790
Subject(s) - biology , phytoplasma , polymerase chain reaction , bioassay , vector (molecular biology) , inoculation , insect , botany , dna extraction , veterinary medicine , virology , horticulture , genetics , gene , medicine , restriction fragment length polymorphism , recombinant dna
The specificity of vector transmission of Flavescence dorée phytoplasma (FDP) was tested by injecting FDP, extracted from laboratory-reared infective Euscelidius variegatus, into specimens of 15 other hemipteran insect species collected in European vineyards. Concentrations of viable phytoplasma extracts and latency in vectors were monitored by injection of healthy-reared E. variegatus leafhoppers. Based on these preliminary results, insects were injected by using phytoplasma extracts that ensured the highest rate of FDP acquisition and transmission by E. variegatus. Transmission into an artificial diet through a Parafilm membrane about 3 weeks after insect injection was attempted. FDP-injected insects that belonged to 15 hemipteran species were confined in cages and fed through the membrane for a 4- to 5-day inoculation access period. FDP DNA was detected by polymerase chain reaction (PCR) in the feeding buffer fed upon by Anoplotettix fuscovenosus, Aphrodes makarovi,E. variegatus, and Euscelis incisus. PCR amplification with specific primers detected FDP DNA in injected insects of all test insect species. Band intensity was positively correlated with the transmissibility of FDP. Transmission of FDP to plants by feeding was confirmed for Anoplotettix fuscovenosus, E. variegatus, and Euscelis incisus, but not for Aphrodes makarovi. Our results suggest that vector competency of FDP is restricted to specimens belonging to the family Cicadellidae, subfamily Deltocephalinae.