
Synergistic Disease in Pepper Caused by the Mixed Infection of Cucumber mosaic virus and Pepper mottle virus
Author(s) -
John F. Murphy,
Kira L. Bowen
Publication year - 2006
Publication title -
phytopathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.264
H-Index - 131
eISSN - 1943-7684
pISSN - 0031-949X
DOI - 10.1094/phyto-96-0240
Subject(s) - biology , cucumber mosaic virus , virus , pepper , titer , mottle , virology , host (biology) , plant virus , horticulture , veterinary medicine , medicine , ecology
The occurrence of more than one virus species in a single plant is not uncommon in cultivated and native plant species. A mixed virus infection may lead to greater disease severity than individual viral components and this is sometimes referred to as a synergistic disease. Although, in some cases, synergism has been demonstrated for various plant growth parameters such as plant height, weight, and yield, proof of synergy typically has not been demonstrated for symptom severity when the mixed virus infection was not lethal. We demonstrated synergy in bell pepper plants co-infected with Cucumber mosaic virus (CMV) and Pepper mottle virus (PepMoV) relative to each virus alone for stem height (two of three trials) and aboveground fresh weight (one of three trials) using factorial analysis and Abbott's equation for synergy. This approach allowed affirmation of the type of response (i.e., synergistic rather than antagonistic) and statistical proof of synergy. A detailed evaluation of symptom severity for each viral treatment revealed three phases associated with host plant developmental stages. A numerical symptom severity rating scale was developed and used in each of two equations to demonstrate statistical proof for synergy based on symptom severity for co-infected plants. Virus accumulation in noninoculated leaves was determined by enzyme-linked immunosorbent assay. In singly infected plants, CMV titers declined in mildly symptomatic leaves representing later stages of plant development, but titers increased in similar leaves of co-infected plants. In contrast, PepMoV titers did not differ in singly or co-infected plants.