z-logo
open-access-imgOpen Access
Nonpathogenic Binucleate Rhizoctonia spp. and Benzothiadiazole Protect Cotton Seedlings Against Rhizoctonia Damping-Off and Alternaria Leaf Spot in Cotton
Author(s) -
Suha Jabaji,
Stephen M. Neate
Publication year - 2005
Publication title -
phytopathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.264
H-Index - 131
eISSN - 1943-7684
pISSN - 0031-949X
DOI - 10.1094/phyto-95-1030
Subject(s) - rhizoctonia , biology , rhizoctonia solani , alternaria , damping off , seedling , root rot , horticulture , biological pest control , leaf spot , fungi imperfecti , alternaria solani , blight , agronomy , botany
Recent reports have shown induction of resistance to Rhizoctonia root rot using nonpathogenic strains of binucleate Rhizoctonia spp. (np-BNR). This study evaluates the biocontrol ability of several np-BNR isolates against root and foliar diseases of cotton in greenhouse trials, provides evidence for induced systemic resistance (ISR) as a mechanism in this biocontrol, and compares the disease control provided by np-BNR with that provided by the chemical inducer benzothiadiazole (BTH). Pretreatment of cotton seedlings with np-BNR isolates provided good protection against pre- and post-emergence damping-off caused by a virulent strain of Rhizoctonia solani (AG-4). Seedling stand of protected cotton was significantly higher (P < 0.05) than that of nonprotected seedlings. Several np-BNR isolates significantly reduced disease severity. The combination of BTH and np-BNR provided significant protection against seedling rot and leaf spot in cotton; however, the degree of disease reduction was comparable to that obtained with np-BNR treatment alone. Significant reduction in leaf spot symptoms caused by Alternaria macrospora occurred on cotyledons pretreated with np-BNR or sprayed with BTH, and the np- BNR-treated seedlings had significantly less leaf spot than BTH-treated seedlings. The results demonstrate that np-BNR isolates can protect cotton from infections caused by both root and leaf pathogens and that disease control was superior to that observed with a chemical inducer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here