
An Isolate of Alternaria alternata That Is Pathogenic to Both Tangerines and Rough Lemon and Produces Two Host-Selective Toxins, ACT- and ACR-Toxins
Author(s) -
Akira Masunaka,
K. Ohtani,
Tobin L. Peever,
L. W. Timmer,
Takashi Tsuge,
Mikihiro Yamamoto,
Hiroyuki Yamamoto,
Kazuya Akimitsu
Publication year - 2005
Publication title -
phytopathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.264
H-Index - 131
eISSN - 1943-7684
pISSN - 0031-949X
DOI - 10.1094/phyto-95-0241
Subject(s) - biology , alternaria alternata , host (biology) , alternaria , rough lemon , toxin , genetics , gene , leaf spot , microbiology and biotechnology , botany , rootstock
Two different pathotypes of Alternaria alternata cause Alternaria brown spot of tangerines and Alternaria leaf spot of rough lemon. The former produces the host-selective ACT-toxin and the latter produces ACR-toxin. Both pathogens induce similar symptoms on leaves or young fruits of their respective hosts, but the host ranges of these pathogens are distinct and one pathogen can be easily distinguished from another by comparing host ranges. We isolated strain BC3-5-1-OS2A from a leaf spot on rough lemon in Florida, and this isolate is pathogenic on both cv. Iyokan tangor and rough lemon and also produces both ACT-toxin and ACR-toxin. Isolate BC3-5-1-OS2A carries both genomic regions, one of which was known only to be present in ACT-toxin producers and the other was known to exist only in ACR-toxin producers. Each of the genomic regions is present on distinct small chromosomes, one of 1.05 Mb and the other of 2.0 Mb. Alternaria species have no known sexual or parasexual cycle in nature and populations of A. alternata on citrus are clonal. Therefore, the ability to produce both toxins was not likely acquired through meiotic or mitotic recombination. We hypothesize that a dispensable chromosome carrying the gene cluster controlling biosynthesis of one of the host-selective toxins was transferred horizontally and rearranged by duplication or translocation in another isolate of the fungus carrying genes for biosynthesis of the other host-selective toxin.