z-logo
open-access-imgOpen Access
A Numerical Study of Combined Use of Two Biocontrol Agents with Different Biocontrol Mechanisms in Controlling Foliar Pathogens
Author(s) -
Xiangming Xu,
Peter Jeffries,
Marco Pautasso,
Michael Jeger
Publication year - 2011
Publication title -
phytopathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.264
H-Index - 131
eISSN - 1943-7684
pISSN - 0031-949X
DOI - 10.1094/phyto-10-10-0267
Subject(s) - antibiosis , biological pest control , biology , competition (biology) , antagonism , plant disease , microbiology and biotechnology , ecology , bacteria , genetics , receptor
Effective use of biocontrol agents is an important component of sustainable agriculture. A previous numerical study of a generic model showed that biocontrol efficacy was greatest for a single biocontrol agent (BCA) combining competition with mycoparasitism or antibiosis. This study uses the same mathematical model to investigate whether the biocontrol efficacy of combined use of two BCAs with different biocontrol mechanisms is greater than that of a single BCA with either or both of the two mechanisms, assuming that two BCAs occupy the same host tissue as the pathogen. Within the parameter values considered, a BCA with two biocontrol mechanisms always outperformed the combined use of two BCAs with a single but different biocontrol mechanism. Similarly, combined use of two BCAs with a single but different biocontrol mechanism is shown to be far less effective than that of a single BCA with both mechanisms. Disease suppression from combined use of two BCAs was very similar to that achieved by the more efficacious one. As expected, a higher BCA introduction rate led to increased disease suppression. Incorporation of interactions between two BCAs did not greatly affect the disease dynamics except when a mycoparasitic and, to a lesser extent, an antibiotic-producing BCA was involved. Increasing the competitiveness of a mycoparasitic BCA over a BCA whose biocontrol mechanism is either competition or antibiosis may lead to improved biocontrol initially and reduced fluctuations in disease dynamics. The present study suggests that, under the model assumptions, combined use of two BCAs with different biocontrol mechanisms in most cases only results in control efficacies similar to using the more efficacious one alone. These predictions are consistent with published experimental results, suggesting that combined use of BCAs should not be recommended without clear understanding of their main biocontrol mechanisms and relative competitiveness, and experimental evaluation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here