z-logo
open-access-imgOpen Access
Genetic Structure ofColletotrichum gloeosporioidessensu lato Isolates Infecting Papaya Inferred by Multilocus ISSR Markers
Author(s) -
Sephra N. Rampersad
Publication year - 2013
Publication title -
phytopathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.264
H-Index - 131
eISSN - 1943-7684
pISSN - 0031-949X
DOI - 10.1094/phyto-07-12-0160-r
Subject(s) - biology , sensu , genetic diversity , population , gene flow , genetics , genetic distance , genetic variation , botany , veterinary medicine , gene , genus , medicine , demography , sociology
Colletotrichum gloeosporioides sensu lato is widely distributed throughout temperate and tropical regions and causes anthracnose disease in numerous plant species. Development of effective disease management strategies is dependent on, among other factors, an understanding of pathogen genetic diversity and population stratification at the intraspecific level. For 132 isolates of C. gloeosporioides sensu lato collected from papaya in Trinidad, inter-simple-sequence repeat-polymerase chain reaction (ISSR-PCR) generated 121 polymorphic loci from five ISSR primers selected from an initial screen of 22 ISSR primers. The mean percentage of polymorphic loci was 99.18%. Bayesian cluster analysis inferred three genetic subpopulations, where group 1 consisted exclusively of isolates collected in the southern part of Trinidad whereas groups 2 and 3, although genetically distinct, were mixtures of isolates collected from both the northern and southern parts of Trinidad. Principal coordinates analysis and unweighted pair-group method with arithmetic mean phylogeny were concordant with Bayesian cluster analysis and supported subdivision into the three subpopulations. Overall, the total mean gene diversity was 0.279, the mean within-population gene diversity was 0.2161, and genetic differentiation for the Trinidad population was 0.225. Regionally, northern isolates had a lower gene diversity compared with southern isolates. Nei's gene diversity was highest for group 1 (h = 0.231), followed by group 2 (h = 0.215) and group 3 (h = 0.202). Genotypic diversity was at or near maximum for all three subpopulations after clone correction. Pairwise estimates of differentiation indicated high and significant genetic differentiation among the inferred subpopulations (Weir's θ of 0.212 to 0.325). Pairwise comparisons among subpopulations suggested restricted gene flow between groups 1 and 2 and groups 1 and 3 but not between groups 2 and 3. The null hypothesis of random mating was rejected for all three inferred subpopulations. These results suggest that pathogen biology and epidemiology as well as certain evolutionary factors may play an important role in population substructuring of C. gloeosporioides sensu lato isolates infecting papaya in Trinidad.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here