z-logo
open-access-imgOpen Access
A Formulation of Trichoderma and Gliocladium to Reduce Damping-off Caused by Rhizoctonia solani and Saprophytic Growth of the Pathogen in Soilless Mix
Author(s) -
Jan Lewis,
Robert P. Larkin,
Deborah L. Rogers
Publication year - 1998
Publication title -
plant disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.663
H-Index - 108
eISSN - 1943-7692
pISSN - 0191-2917
DOI - 10.1094/pdis.1998.82.5.501
Subject(s) - rhizoctonia solani , biology , hypha , damping off , horticulture , pathogen , rhizoctonia , trichoderma , biomass (ecology) , hydroponics , botany , population , biological pest control , agronomy , microbiology and biotechnology , demography , sociology
Commercially manufactured cellulose granules (Biodac) were mixed with a sticker and fermentor-produced biomass of isolates of Trichoderma spp. and Gliocladium virens to produce a formulation in which chlamydospores in the biomass were “activated” with dilute acid. Activation resulted in the formation of young, actively growing hyphae of the biocontrol fungi within a 2- to 3-day period under no special aseptic conditions. Activated Biodac with biomass of isolates Gl-3, Gl-21, and Gl-32 of G. virens and isolate TRI-4 of T. hamatum applied to soilless mix at a rate of 1.5% (wt/wt) reduced damping-off of eggplant caused by Rhizoctonia solani (R-23) and resulted in stands comparable to that (88%) in noninfested soilless mix. Saprophytic growth of the pathogen was also reduced. The application of either of two activated Biodac formulations to provide the same amount (1.5% with 9.4 mg of biomass per g of Biodac or 0.2% with 75.0 mg of biomass per g of Biodac) reduced preemergence damping-off as well as saprophytic growth of R-23. Also, there was about a 10 3 -fold population increase of Gl-3 and TRI-4 in the soilless mix at the time of plant harvest compared with that provided to the soilless mix at the time of formulation addition. Activated Biodac of Gl-3 also reduced the spread of R-23 in soilless mix when the pathogen was applied at specific foci rather than evenly distributed. The inhibition of pathogen spread significantly reduced the postemergence damping-off of cucumber, eggplant, and pepper seedlings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here