z-logo
open-access-imgOpen Access
Tomato Spotted Wilt Virus Resistance in Chrysanthemum Expressing the Viral Nucleocapsid Gene
Author(s) -
John M. Sherman,
J. W. Moyer,
Margaret E. Daub
Publication year - 1998
Publication title -
plant disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.663
H-Index - 108
eISSN - 1943-7692
pISSN - 0191-2917
DOI - 10.1094/pdis.1998.82.4.407
Subject(s) - biology , tospovirus , virology , western flower thrips , gene , agrobacterium , virus , transformation (genetics) , plant virus , thrips , genetics , horticulture , thripidae , tomato spotted wilt virus
Three tomato spotted wilt virus (TSWV) nucleocapsid (N) gene constructs were employed for Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora) cv. Polaris. These constructs contained either a full-length N gene (pTSWVN+), a full-length N gene encoding a truncated N protein (pTSWVNt), or an antisense version of the full-length N gene (pTSWVN-), all derived from a dahlia isolate of TSWV (TSWV-D). Initial resistance screens were conducted on cuttings made from 152 pTSWVN+, 37 pTSWVNt, and 47 pTSWVN- transformed plants employing a highly virulent, heterologous strain of TSWV (TSWV-GB) isolated from chrysanthemum and vectored by thrips. This screening served to eliminate the majority of TSWV-susceptible transgenic lines. More rigorous resistance tests with three rounds of mechanical inoculation with TSWV-GB identified one pTSWVNt and two pTSWVN- transformed lines that exhibited a total lack of systemic symptoms and no virus accumulation. Six other lines, including some pTSWVN+, exhibited a lack of one or more of the destructive necrotic TSWV symptoms (stem canker and apical bud death) and a delay in symptom expression. Both sense and antisense constructs, therefore, were found to be effective at yielding TSWV resistance in chrysanthemum. Molecular analysis revealed that the highly TSWV-resistant pTSWVNt line had no detectable levels of N protein. All three resistant lines had low levels of N gene transcript and at least three transgene insertion sites within their genomes, although susceptible lines often had a similar number of insertion sites. The generation of Polaris lines resistant to TSWV transmitted either mechanically or by thrips represents the first time a major ornamental crop has been genetically engineered for disease resistance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here