
Methodology for Inoculating Sweetpotato Virus Disease: Discovery of Tip Dieback, and Plant Recovery and Reversion in Different Clones
Author(s) -
R.O.M. Mwanga,
G. Craig Yencho,
R. W. Gibson,
J. W. Moyer
Publication year - 2013
Publication title -
plant disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.663
H-Index - 108
eISSN - 1943-7692
pISSN - 0191-2917
DOI - 10.1094/pdis-12-11-1072-re
Subject(s) - biology , ipomoea , mottle , botany , virus , plant virus , virology
Evaluating sweetpotato (Ipomoea batatas) genotypes for resistance to sweetpotato virus disease (SPVD) has been slow and inefficient. Ipomoea setosa plants, normally used as the source of scions for graft-infecting sweetpotatoes with viral diseases, are often severely stunted and their mortality is 10 to 30% when infected with SPVD, making them unsuitable as scions. Tanzania, a landrace of I. batatas widely grown in East Africa, was found to be a superior host for maintaining and increasing SPVD inoculum (scions) for mass grafting. Modifications to a cleft-grafting technique also increased survival of grafted SPVD-affected scions from 5 to 100%. These modifications, coupled with an efficient SPVD scoring technique, allowed rapid screening of large sweetpotato populations for SPVD resistance. Plant recovery from SPVD is reported here as a component of SPVD resistance. Differences in recovery from SPVD were detected among progenies, indicating its genetic basis. Plant tip dieback, a hypersensitivity response, was observed only in families with cv. Wagabolige as a parent. These findings may open up new opportunities for improved understanding and control of this devastating disease.