
Diagnostic Potential of Polyclonal Antibodies Against Bacterially Expressed Recombinant Coat Protein of Alfalfa mosaic virus
Author(s) -
Behnam Khatabi,
Bin He,
M. R. Hajimorad
Publication year - 2012
Publication title -
plant disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.663
H-Index - 108
eISSN - 1943-7692
pISSN - 0191-2917
DOI - 10.1094/pdis-08-11-0683-re
Subject(s) - polyclonal antibodies , biology , virology , immunogenicity , recombinant dna , alfalfa mosaic virus , antibody , plant virus , virus , gene , coat protein , genetics , rna
Alfalfa mosaic virus (AMV), a pathogen of a wide range of plant species, including Glycine max (soybean), is poorly immunogenic. Polyclonal antibodies were generated against bacterially expressed recombinant coat proteins (rCPs) of two biologically distinct AMV strains in rabbits and compared with those raised against native and glutaraldehyde-treated virions of the same strains. Analyses showed that sera against rCPs had comparable antibody titers in indirect enzyme-linked immunosorbent assay with those raised against virions when soybean sap containing homologous viruses served as antigens. Polyclonal antibodies against rCPs were specific, sensitive, and detected all AMV isolates that originated from soybean fields from geographically different regions of the United States. Comparison of CP genes of these isolates showed 96 to 99 and 96 to 100% nucleotide and amino acid sequence identities, respectively, suggesting that they are all closely related. This was further confirmed by phylogenetic analysis where they were all clustered together along with representative AMV strains belonging to group I. Collectively, our data demonstrate that, despite poor immunogenicity of AMV, polyclonal antibodies against rCP are effective probes for detection and diagnosis of the virus.