
Evaluation of Visible-Near Infrared Reflectance Spectra of Avocado Leaves as a Non-destructive Sensing Tool for Detection of Laurel Wilt
Author(s) -
Sindhuja Sankaran,
Reza Ehsani,
Sharon Inch,
R. C. Ploetz
Publication year - 2012
Publication title -
plant disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.663
H-Index - 108
eISSN - 1943-7692
pISSN - 0191-2917
DOI - 10.1094/pdis-01-12-0030-re
Subject(s) - persea , biology , principal component analysis , asymptomatic , horticulture , petiole (insect anatomy) , wilt disease , wilting , botany , mathematics , statistics , medicine , hymenoptera , pathology
Laurel wilt, caused by the fungus Raffaelea lauricola, affects the growth, development, and productivity of avocado, Persea americana. This study evaluated the potential of visible-near infrared spectroscopy for non-destructive sensing of this disease. The symptoms of laurel wilt are visually similar to those caused by freeze damage (leaf necrosis). In this work, we performed classification studies with visible-near infrared spectra of asymptomatic and symptomatic leaves from infected plants, as well as leaves from freeze-damaged and healthy plants, both of which were non-infected. The principal component scores computed from principal component analysis were used as input features in four classifiers: linear discriminant analysis, quadratic discriminant analysis (QDA), Naïve-Bayes classifier, and bagged decision trees (BDT). Among the classifiers, QDA and BDT resulted in classification accuracies of higher than 94% when classifying asymptomatic leaves from infected plants. All of the classifiers were able to discriminate symptomatic-infected leaves from freeze-damaged leaves. However, the false negatives mainly resulted from asymptomatic-infected leaves being classified as healthy. Analyses of average vegetation indices of freeze-damaged, healthy (non-infected), asymptomatic-infected, and symptomatic-infected leaves indicated that the normalized difference vegetation index and the simple ratio index were statistically different.