z-logo
open-access-imgOpen Access
Use of a Pooled Transposon Mutation Grid to Demonstrate Roles in Disease Development for Erwinia carotovora subsp. atroseptica Putative Type III Secreted Effector (DspE/A) and Helper (HrpN) Proteins
Author(s) -
Maria C. Holeva,
Kenneth S. Bell,
L. J. Hyman,
Anna O. Avrova,
Stephen C. Whisson,
Paul R. J. Birch,
Ian K. Toth
Publication year - 2004
Publication title -
molecular plant-microbe interactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.565
H-Index - 153
eISSN - 1943-7706
pISSN - 0894-0282
DOI - 10.1094/mpmi.2004.17.9.943
Subject(s) - erwinia , biology , effector , type three secretion system , virulence , gene , mutant , microbiology and biotechnology , genetics , gene cluster
Soft rot Erwinia spp., like other closely related plant pathogens, possess a type III secretion system (TTSS) (encoded by the hrp gene cluster) implicated in disease development. We report the sequence of the entire hrp gene cluster and adjacent dsp genes in Erwinia carotovora subsp. atroseptica SCRI1039. The cluster is similar in content and structural organization to that in E. amylovora. However, eight putative genes of unknown function located within the E. carotovora subsp. atroseptica cluster do not have homologues in the E. amylovora cluster. An arrayed set of Tn5 insertional mutants (mutation grid) was constructed and pooled to allow rapid isolation of mutants for any given gene by polymerase chain reaction screening. This novel approach was used to obtain mutations in two structural genes (hrcC and hrcV), the effector gene dspE/A, and the helper gene hrpN. An improved pathogenicity assay revealed that these mutations led to significantly reduced virulence, showing that both the putative E. carotovora subsp. atroseptica TTSS-delivered effector and helper proteins are required for potato infection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here