
Syringolin-Mediated Activation of the Pir7b Esterase Gene in Rice Cells Is Suppressed by Phosphatase Inhibitors
Author(s) -
Paul O. Hassa,
José Granado,
Ernst Freydl,
Urs Wäspi,
Robert Dudler
Publication year - 2000
Publication title -
molecular plant-microbe interactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.565
H-Index - 153
eISSN - 1943-7706
pISSN - 0894-0282
DOI - 10.1094/mpmi.2000.13.3.342
Subject(s) - pseudomonas syringae , biology , okadaic acid , phosphatase , oryza sativa , elicitor , staurosporine , signal transduction , cycloheximide , protein kinase a , kinase , microbiology and biotechnology , hypersensitive response , biochemistry , gene , protein biosynthesis , phosphorylation , plant disease resistance
Inoculation of rice plants (Oryza sativa) with the nonhost pathogen Pseudomonas syringae pv. syringae leads to the activation of defense-related genes and ultimately to induced resistance against the rice blast fungus Pyricularia oryzae. One of the molecular determinants of P. syringae pv. syringae that is recognized by the plant cells and evokes these defense responses is syringolin A, an elicitor that is secreted by the bacteria under appropriate conditions. In order to investigate signal transduction events elicited by syringolin A, the response of cultured rice cells to syringolin A application was analyzed. Cultured rice cells were able to sense syringolin A at concentrations in the nanomolar range as observed by the transient accumulation of Pir7b esterase transcripts. Syringolin A-mediated Pir7b transcript accumulation was inhibited by cycloheximide, indicating that de novo protein synthesis was required. Calyculin and okadaic acid, two protein phosphatase inhibitors, blocked Pir7b gene induction, whereas the serine/threonine protein kinase inhibitors staurosporine and K-252a had no effect on Pir7b transcript levels. Actin transcript levels were essentially not affected by inhibitor treatments over the experimental time span. These results imply that dephosphorylation of a phosphoprotein is an important step in the syringolin A-triggered signal transduction pathway.