z-logo
open-access-imgOpen Access
Beticolins, Nonpeptidic, Polycyclic Molecules Produced by the Phytopathogenic Fungus Cercospora beticola, as a New Family of Ion Channel-Forming Toxins
Author(s) -
Cyril Goudet,
MarieLouise Milat,
Hervé Sentenac,
JeanBaptiste Thibaud
Publication year - 2000
Publication title -
molecular plant-microbe interactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.565
H-Index - 153
eISSN - 1943-7706
pISSN - 0894-0282
DOI - 10.1094/mpmi.2000.13.2.203
Subject(s) - chemistry , stereochemistry , conductance , ion channel , molecule , residue (chemistry) , biochemistry , organic chemistry , mathematics , combinatorics , receptor
Beticolins are toxins produced by Cercospora beticola, a phytopathogenic fungus responsible for the leaf spot disease of sugar beet. They form a family of 20 nonpeptidic compounds (named B0 to B19) that share the same polycyclic skeleton but differ by isomeric configuration (ortho- or para-) and by a variable residue R (bridging two carbons in one of the six cycles). It has been previously shown that B0 assembles itself into a multimeric structure and forms ion channels into planar lipid bilayers (C. Goudet, A.-A. Véry, M.-L. Milat, M. Ildefonse, J.-B. Thibaud, H.Sentenac, and J.-P. Blein, Plant J. 14:359-364, 1998). In the present work, we investigate pore formation by three ortho-beticolins, B0, B2, and B4, and their related (i.e., same R) para-isomers, B13, B1, and B3, respectively, using planarlipid bilayers. All beticolins were able to form ionchannels with multiple conductance states, although the type of cyclization (ortho- or para-) and residue (R) result in variations of channel conductance and ionic permeability, respectively. Channel formation by beticolins is likely to be involved in the biological activity of these toxins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here