
The Broad-Spectrum Tospovirus Resistance Gene Sw-5 of Tomato Is a Homolog of the Root-Knot Nematode Resistance Gene Mi
Author(s) -
Sérgio Hermínio Brommonschenkel,
Anne Frary,
S. D. Tanksley
Publication year - 2000
Publication title -
molecular plant-microbe interactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.565
H-Index - 153
eISSN - 1943-7706
pISSN - 0894-0282
DOI - 10.1094/mpmi.2000.13.10.1130
Subject(s) - biology , genetics , gene , r gene , locus (genetics) , gene family , hypersensitive response , plant disease resistance , cosmid , positional cloning , genome
We used a positional cloning approach to isolate the Sw-5 disease resistance locus of tomato. Complementation experiments with overlapping cosmid clones enabled us to demonstrate that Sw-5 is a single gene locus capable of recognizing several tospovirus isolates and species. Analysis of the predicted Sw-5 protein suggests that it is a cytoplasmic protein, with a potential nucleotide binding site (NBS) domain and a C-terminal end consisting of leucine-rich repeats (LRRs). Based on its structural features, Sw-5 belongs to the class of NBS-LRR resistance genes that includes the tomato Mi, I2, and Prf genes; the Arabidopsis RPM1 gene; and the plant potato virus X resistance gene Rx. The overall similarity between the Sw-5 and Mi proteins of tomato suggests that a shared or comparable signal transduction pathway leads to both virus and nematode resistance in tomato. The similarity also supports the hypothesis that Sw-5 provides resistance via a hypersensitive response. Sw-5 is a member of a loosely clustered gene family in the telomeric region of chromosome 9. Members of this family map to other regions of chromosome 9 and also to chromosome 12, where several fungal, virus, and nematode genes have been mapped, suggesting that paralogs of Sw-5 may have evolved to provide different resistance specificities.