
The Arg-Gly-Asp–Containing, Solvent-Exposed Loop of Ptr ToxA Is Required for Internalization
Author(s) -
Viola A. Manning,
Sara M Hamilton,
P. Andrew Karplus,
Lynda M. Ciuffetti
Publication year - 2008
Publication title -
molecular plant-microbe interactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.565
H-Index - 153
eISSN - 1943-7706
pISSN - 0894-0282
DOI - 10.1094/mpmi-21-3-0315
Subject(s) - internalization , toxin , phosphorylation , biology , microbiology and biotechnology , immunoprecipitation , biochemistry , in vitro , plasma protein binding , chemistry , cell , gene
Internalization of the proteinaceous host-selective toxin, Ptr ToxA (ToxA), into sensitive wheat mesophyll cells is correlated with toxin activity. The solvent-exposed, Arg-Gly-Asp (RGD)-containing loop of ToxA is a candidate for interaction with the plasma membrane, which is a likely prerequisite to toxin internalization. Based on the percentage of cells affected by a given number of ToxA molecules in a treatment zone, the number of ToxA molecules bound to high-affinity sites was estimated at 3 × 10 6 per cell and the Kd for binding was estimated to be near 1 nM. An improved heterologous expression method of proteins that contain mutations in ToxA, coupled with a newly developed semiquantitative bioassay, revealed that some amino acids in the RGD-containing loop contribute more to toxin activity than others. Protease protection assays that detect internalized protein and inhibition of toxin uptake indicated that, for each ToxA variant tested, the extent of toxin activity correlates with the amount of internalized protein. RGD-containing peptide inhibition of both activity and internalization supported these findings. These data support the hypothesis that ToxA interacts with a high-affinity binding site on wheat mesophyll cells through the RGD-containing, solvent-exposed loop, resulting in toxin internalization and eventual cell death. The inability to detect phosphorylation of ToxA in vitro and in vivo suggests that a putative CKII phosphorylation site in the RGD-containing loop is required for internalization, not phosphorylation.