z-logo
open-access-imgOpen Access
OsLSD1, a Rice Zinc Finger Protein, Regulates Programmed Cell Death and Callus Differentiation
Author(s) -
Limin Wang,
Zhibin Pei,
Yingchuan Tian,
Chaozu He
Publication year - 2005
Publication title -
molecular plant-microbe interactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.565
H-Index - 153
eISSN - 1943-7706
pISSN - 0894-0282
DOI - 10.1094/mpmi-18-0375
Subject(s) - zinc finger , callus , programmed cell death , microbiology and biotechnology , zinc , biology , botany , chemistry , apoptosis , biochemistry , transcription factor , gene , organic chemistry
The Arabidopsis LSD1 and LOL1 proteins both contain three conserved zinc finger domains and have antagonistic effects on plant programmed cell death (PCD). In this study, a rice (Oryza sativa) functional homolog of LSD1, designated OsLSD1, was identified. The expression of OsLSD1 was light-induced or dark-suppressed. Overexpression of OsLSD1 driven by the cauliflower mosaic virus 35S promoter accelerated callus differentiation in transformed rice tissues and increased chlorophyll b content in transgenic rice plants. Antisense transgenic rice plants exhibited lesion mimic phenotype, increased expression of PR-1mRNA, and an accelerated hypersensitive response when inoculated with avirulent isolates of blast fungus. Both sense and antisense transgenic rice plants conferred significantly enhanced resistance against a virulent isolate of blast fungus. Moreover, ectopic overexpression of OsLSD1 in transgenic tobacco (Nicotiana tabacum) enhanced the tolerance to fumonisins B1 (FB1), a PCD-eliciting toxin. OsLSD1 green fluorescent protein fusion protein was located in the nucleus of tobacco cells. Our results suggest that OsLSD1 plays a negative role in regulating plant PCD, whereas it plays a positive role in callus differentiation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here