z-logo
open-access-imgOpen Access
Proteomics Analysis of the Regulatory Role of Rpf/DSF Cell-to-Cell Signaling System in the Virulence of Xanthomonas campestris
Author(s) -
Aileen O’Connell,
Shi-Qi An,
Yvonne McCarthy,
Fabian Schulte,
Karsten Niehaus,
Yanan He,
JiLiang Tang,
Robert P. Ryan,
J. Maxwell Dow
Publication year - 2013
Publication title -
molecular plant-microbe interactions
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.565
H-Index - 153
eISSN - 1943-7706
pISSN - 0894-0282
DOI - 10.1094/mpmi-05-13-0155-r
Subject(s) - xanthomonas campestris , biology , virulence , signal transduction , xanthomonas campestris pv. campestris , proteomics , xanthomonas , cell signaling , gene , mutant , microbiology and biotechnology , genetics
The black rot pathogen Xanthomonas campestris utilizes molecules of the diffusible signal factor (DSF) family as signals to regulate diverse processes contributing to virulence. DSF signal synthesis and transduction requires proteins encoded by the rpf gene cluster. RpfF catalyzes DSF synthesis, whereas the RpfCG two-component system links the perception of DSF to alteration in the level of the second messenger cyclic di-GMP. As this nucleotide can exert a regulatory influence at the post-transcriptional and post-translational levels, we have used comparative proteomics to identify Rpf-regulated processes in X. campestris that may not be revealed by transcriptomics. The abundance of a number of proteins was altered in rpfF, rpfC, or rpfG mutants compared with the wild type. These proteins belonged to several functional categories, including biosynthesis and intermediary metabolism, regulation, oxidative stress or antibiotic resistance, and DNA replication. For many of these proteins, the alteration in abundance was not associated with alteration in transcript level. A directed mutational analysis allowed us to describe a number of new virulence factors among these proteins, including elongation factor P and a putative outer membrane protein, which are both widely conserved in bacteria.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here