The Development of In Vitro Culture Methods to Characterize Primary T-Cell Responses to Drugs
Author(s) -
Lee Faulkner,
K. Martinsson,
Anahi Santoyo-Castelazo,
Karin Cederbrant,
Ina SchuppeKoistinen,
Helen Powell,
Jonathan Tugwood,
Dean J. Naisbitt,
B. Kevin Park
Publication year - 2012
Publication title -
toxicological sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.352
H-Index - 183
eISSN - 1096-6080
pISSN - 1096-0929
DOI - 10.1093/toxsci/kfs080
Subject(s) - immunology , t cell , population , immune system , biology , cytokine , pharmacology , chemistry , medicine , environmental health
Adverse drug reactions represent a major stumbling block to drug development and those with an immune etiology are the most difficult to predict. We have developed an in vitro T-cell priming culture method using peripheral blood from healthy volunteers to assess the allergenic potential of drugs. The drug metabolite nitroso sulfamethoxazole (SMX-NO) was used as a model drug allergen to establish optimum assay conditions. Naive T cells were cocultured with monocyte-derived dendritic cells at a ratio of 25:1 in the presence of the drug for a period of 8 days, to expand the number of drug-responsive T cells. The T cells were then incubated with fresh dendritic cells, and drug and their antigen responsiveness analyzed using readouts for proliferation, cytokine secretion, and cell phenotype. All five volunteers showed dose-dependent proliferation as measured by 5-(and 6)-carboxyfluorescein diacetate succinimidyl ester content and by (3)H-thymidine uptake. CD4 T cells that had divided in the presence of SMX-NO had changed from a naive phenotype (CD45RA+) to a memory phenotype (CD45RO+). These memory T cells expressed the chemokine receptors CCR2, CCR4, and CXCR3 suggesting a mixture of T(H)1 and T(H)2 cells in the responding population, with a propensity for homing to the skin. Drug stimulation was also associated with the secretion of a mixture of T(H)1 cytokines (interferon γ) and T(H)2 cytokines (interleukin [IL]-5 and IL-13) as detected by ELISpot. We are currently developing this approach to investigate the allergenic potential of other drugs, including those where an association between specific human leucocyte antigen alleles and susceptibility to an immunological reaction has been established.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom