z-logo
open-access-imgOpen Access
Modulation of the Earliest Component of the Human VEP by Spatial Attention: An Investigation of Task Demands
Author(s) -
Kieran Mohr,
Niamh Carr,
Rachel Georgel,
Simon P. Kelly
Publication year - 2020
Publication title -
cerebral cortex communications
Language(s) - English
Resource type - Journals
ISSN - 2632-7376
DOI - 10.1093/texcom/tgaa045
Subject(s) - stimulus (psychology) , perception , replicate , modulation (music) , psychology , cognitive psychology , neuroscience , afferent , communication , mathematics , physics , acoustics , statistics
Spatial attention modulations of initial afferent activity in area V1, indexed by the first component “C1” of the human visual evoked potential, are rarely found. It has thus been suggested that early modulation is induced only by special task conditions, but what these conditions are remains unknown. Recent failed replications—findings of no C1 modulation using a certain task that had previously produced robust modulations—present a strong basis for examining this question. We ran 3 experiments, the first to more exactly replicate the stimulus and behavioral conditions of the original task, and the second and third to manipulate 2 key factors that differed in the failed replication studies: the provision of informative performance feedback, and the degree to which the probed stimulus features matched those facilitating target perception. Although there was an overall significant C1 modulation of 11%, individually, only experiments 1 and 2 showed reliable effects, underlining that the modulations do occur but not consistently. Better feedback induced greater P1, but not C1, modulations. Target-probe feature matching had an inconsistent influence on modulation patterns, with behavioral performance differences and signal-overlap analyses suggesting interference from extrastriate modulations as a potential cause.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom