Deflating Trees: Improving Bayesian Branch-Length Estimates using Informed Priors
Author(s) -
Bradley J. Nelson,
John J. Andersen,
Jeremy M. Brown
Publication year - 2015
Publication title -
systematic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.128
H-Index - 182
eISSN - 1076-836X
pISSN - 1063-5157
DOI - 10.1093/sysbio/syv003
Subject(s) - prior probability , dirichlet distribution , bayesian probability , prior information , set (abstract data type) , data set , computer science , econometrics , mathematics , statistics , artificial intelligence , mathematical analysis , programming language , boundary value problem
Prior distributions can have a strong effect on the results of Bayesian analyses. However, no general consensus exists for how priors should be set in all circumstances. Branch-length priors are of particular interest for phylogenetics, because they affect many parameters and biologically relevant inferences have been shown to be sensitive to the chosen prior distribution. Here, we explore the use of outside information to set informed branch-length priors and compare inferences from these informed analyses to those using default settings. For both the commonly used exponential and the newly proposed compound Dirichlet prior distributions, the incorporation of relevant outside information improves inferences for data sets that have produced problematic branch- and tree-length estimates under default settings. We suggest that informed priors are worthy of further exploration for phylogenetics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom