Relaxed Phylogenetics and the Palaeoptera Problem: Resolving Deep Ancestral Splits in the Insect Phylogeny
Author(s) -
Jessica A. Thomas,
John Trueman,
Andrew Rambaut,
John J. Welch
Publication year - 2012
Publication title -
systematic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.128
H-Index - 182
eISSN - 1076-836X
pISSN - 1063-5157
DOI - 10.1093/sysbio/sys093
Subject(s) - biology , odonata , taxon , phylogenetics , outgroup , phylogenetic tree , evolutionary biology , tree of life (biology) , zoology , ecology , paleontology , biochemistry , gene
The order in which the 3 groups of winged insects (the Pterygota) diverged from their common ancestor has important implications for understanding the origin of insect flight. But despite this importance, the split between the Odonata (dragonflies and damselflies), Ephemeroptera (mayflies), and Neoptera (the other winged orders) remains very much unresolved. Indeed, previous studies have obtained strong apparent support for each of the 3 possible branching patterns. Here, we present a systematic reinvestigation of the basal pterygote split. Our results suggest that outgroup choice and limited taxon sampling have been major sources of systematic error, even for data sets with a large number of characters (e.g., in phylogenomic data sets). In particular, a data set of 113 taxa provides consistent support for the Palaeoptera hypothesis (the grouping of Odonata with Ephemeroptera), whereas results from data sets with fewer taxa give inconsistent results and are highly sensitive to minor changes in data and methods. We also focus on recent methods that exploit temporal information using fossil calibrations, combined with additional assumptions about the evolutionary process, and so reduce the influence of outgroup choice. These methods are shown to provide more consistent results, for example, supporting Palaeoptera, even for data sets that previously supported other hypotheses. Together, these results have implications for understanding insect origins and for resolving other problematic splits in the tree of life.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom